Using Grapher on Macs to draw Slope Fields.

Suppose that we want a computer generated slope field for the differential equation y'=y-t

1. Go to a Mac that's not too old and find Grapher under the Applications -> Utilities Folder. Double-click to start it. Select 2D.

	araph	50	uru			
Default			-	2.5		
Margins						
Classic			v			
Polar			1			
Lin-Log				. 1		
Log-Log	5			0		· · · · ·
Polar Log					x	
White						
		_	-	-2.5		

2. Under the Equation menu, select "New Equation From Template". Choose "Vector Field" and "Explicit Cartesian".

Pa	rametric	Differential Equati	on Vecto	or Field	Other	
Description		Equation	on			
Implicit Car	tesian	⊿y=.				
Explicit Car	tesian	$\Delta \begin{bmatrix} x \\ y \end{bmatrix}$				
						_
				Can	cel	ОК

3. You will see the following formula bar:

4. In the blank spot on the top (where the cursor is in the picture) put a 1. In the second spot, put the formula for y' (in this example it is y-x). Notice that you should use an *x* rather than a *t*.

n	Equalize Axes						
	$\Delta \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ y - x \end{bmatrix}$						

5. Hit return and you should see the slope field.

	Untitled	0
<u>► ♡ </u>		0
Action Zoom In Zoom Out Center Origin	.qualize Axes	Inspector
Equations y=	$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y-x \end{bmatrix}$	<u>~∑</u> x²
$\mathbf{\nabla} = \Delta \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ y - x \end{bmatrix}$		~~~~~

		* / / / / / / / / / /
		· / / / / / / / / /
	- 18 1 - 41 1 - 32 1 - 24 - 7,60,8 0 0,8 1,6 x	24 32 4.8
	11111111111111	
	1111111111111	iiiiiiii
		<u>iiiiiiii</u>
		<u>++++++</u>
		11111111
		<u> </u>
+ *		

To Draw A Solution Curve to the DE.

6. Under the Equation Menu, go to "New Equation from Palette". Select "Differential Equation" and choose "1st order implicit"

7. You will see:

You will need to enter both the DE and an initial condition, as in the next screenshot. In this screenshot we have entered the DE y'=y-x and the initial condition y(0) = -0.5

9. Hit return, and you should see the solution curve. In the next screen shot, the solution curve is drawn on top of the slope field.

000	Untitled	C
Action Zoom In Zoom Out Center Origin	Equalize Axes	() Inspector
Action Zoom In Zoom Out Center Origin Equations $\begin{array}{c} y = \\ y = \\ y = \\ y' = y - x, y(0) = -0.5 \end{array}$	y'=y-x, y(0)=-0.5 1 1	